CHAPTER

SNOW AND ICING
PROBLEMS

2.1 Characteristics of Snow Covers

The characteristics of snow covers vary greatly depending upon the
location. In structural design and construction the factors that should be
considered include snow precipitation, snow depth, snow properties,
length of snow season, snow transport, and snow drifting. In moun-
tainous terrain the risks of avalanches and snow creep should also be
assessed.

Information about snow precipitation, snow thickness, snow loads, and
the length of the snow season is often available in local codes and their
commentaries. Figure 2.1 gives a rough idea of the existence of snow
cover. The properties and characteristics of the snow covers in subarctic
and arctic areas, however, differ. The key factor is snow transport, which
depends, among other things, on wind speed, snow density, and how well
the snow particles have bonded (Fig. 2.2). When the wind velocity is
below 10 m/s (20 mi/h), the transport of even fresh falling snow is not
very significant. However, blowing of loose surface snow is an important
design consideration in flat treeless terrain when the wind speed exceeds

15 m/s (30 mi/h).
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Figure 2.1 Extent of snow cover on the world surface. 1 -—permanent cover of snow
and ice; 2 — stable snow cover of varying duration forms every year; 3— snow cover
forms almost every year, but is not stable; 4—no snow cover; 5—duration of snow
cover (months). (Mellor, 1964.)

Snow particles travel close to the snow surface in areas of laminar flow,
and they are deposited especially in low-wind-speed regions in the vicin-
ity of flow disturbances. Knowledge of airflow characteristics is thus
important when snowdrifts are studied. When wind is associated with
snowfall, snowdrift patterns are changed, especially at and near higher
locations such as the roofs out of the reach of the normal snow transport
path. The snow already deposited on the roof is only a limited source of
drift accumulation, but during a snowstorm the supply is greatly in-
creased.

In subarctic conditions the amount of snow transport is typically lim-
ited mostly because of vegetation. The density of freshly fallen snow in
freezing temperatures is approximately 100 kg/m? (6 1b/ft?) or less.
When the snow cover reaches its maximum thickness, its average density
will increase to about 200 to 300 kg/m? (12 to 20 Ib/ft%) due to the
combined effect of compaction, moisture absorption, evaporation, and
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Figure 2.2 ' Typical arctic snow-transport profiles. (Mel-
lor, 1965.)

melting. The density of compacted snow or old melting snow may exceed
500 kg/m?3 (30 1b/ft3).

In arctic, treeless tundra, and high mountain regions, the snow parti-
cles are rounded because of the constant snow transport during the long
winter. Even if the annual precipitation is small, snowdrifts may reach
considerable dimensions. The average density of snowdrifts is high, on
the order of 300 to 500 kg/m? (20 to 30 Ib/ft®). Due to the steep temper-
ature gradients depth hoar, which is the result of vapor diffusion from a
warm lower layer to colder layers above, is typical for arctic snow covers.

2.2 Snow Loads

The snow loads on individual structural elements, such as wires or ele-
vated pipes, may be found based on the width and shape of the structures
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Figure 2.3 Typical snow accumulation coefficients for roofs. Wind
reduction factor k may be used together with C° values. (a) Simple
cable and hip roofs. (b) Multispan sloped roofs. (c) Major obstructions
on flat roofs. (d) Two-level roofs.

rather than on local climatological conditions, but usually the snow load
of a structure is given in the following form:

S=kCg 2.1)
where S = snow load _ _
g = ground snow load based on snow thickness and average den-
sity
C = snow accumulation coefficient
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Figure 2.8 Proposed snow loading on arches. For roofs exposed to wind on all
sides, all values of C; may be reduced by 25%. (Adapted from Taylor, 1981.)

k = wind reduction factor, accounting for snow transport off the
elevated and exposed roofs

The structural importance factor and the thermal factor that account for
the possible melting of snow can also be recognized in Eq. (2.1).

The ground snow load is given in local codes, and it usually has a value’
of between 0.5 and 4 kP4 (10 to 80 1b/ft2). However, one should keep in
mind that the average ground snow load normally increases with eleva-
tion because of longer winters and other meteorological effects. Thusina
mountain area the ground snow load given by a code may be exceeded.

The snow loads on roofs are generally smaller than the ground loads
because of the effect of winds. The reduction factor k has a typical value
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Figure 2.5 Snow drifts on large warehouse in Boston, Mass. (Courtesy Maurice
A. Reidy Engineers, adapted from Templin and Schriever, 1982.)

of 0.8 for not very well sheltered and 0.6 for well exposed roofs. How-
ever, because of the effects of snow accumulation, the average load may
be exceeded. Some examples of typical accumulation coefficients are
given in Figs. 2.3 and 2.4.

There are some situations where snow loads may catch the designer off
guard, as shown in Figs. 2.5 and 2.6. In addition to ordinary code provi-
sions, practical considerations based on local conditions must be allowed
for. For example, in design one should pay full attention to the role of
unbalanced snow loads as well as to the possibility of snow sliding from an
upper roof to a lower one (Fig. 2.7). In the design of special structures,
such as large domes, snow accumulation can be studied by small-scale
model tests.

Water pressure combined with snow load is one important roof design
consideration. The design snow load may be temporarily exceeded on
flat roofs when heavy rain falls on snow and does not drain away rapidly.
The problem may be greatly magnified in valleys and low areas of the
roof due to snow meltwater and rain ponding if there is no adequate slope
to the drain or if the drains are blocked with ice. These areas tend to
deflect increasingly, allowing even deeper ponds to form. Local roof
failures have been experienced due to such combined snow, meltwater,
and rain loads. Leakage problems are even more common. Drains are
often heat traced to prevent ice formation. Gutters and roof valleys may
be provided with heating cables to secure proper drainage. An alterna-
tive solution is to cut the roof insulation locally and utilize thermal leaks.



Figure 2.6 Parking shelter collapsed in spring under the wejght
of accumulated wet snow. (Courtesy of Lehtikuva Oy.)

Figure 2.7 Example of heavy snow loads, Fort Wainwright, Alaska.
Note how falling snow may increase load on patio roof. (Courtesy of
W. Tobiasson.)
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Figure 2.8 Passive methods to control snow drifting. (Adapted from Rice, 1975.) -
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Figure 2.9 Snow accumulation and wind climate around a northern
community, studied with small-scale model in wind tunnel. (Courtesy
of Technical Research Centre of Finland. )

Lateral snow pressures have also caused some structural failures. The
plowing of streets may, for example, damage traffic sign poles. In Alaska
snow creep has caused failures of power transmission poles in steep
slopes (Shira, 1978).

2.3 Snow Control

A variety of measures can prevent or minimize the structural, functional,
or maintenance problems caused by snow deposits or drifting. These
include site selection, special design considerations, erecting control
structures, and snow melting. In subarctic regions snow drifting is only of
local importance, but in treeless arctic tundra, where snow transport and
drifting are almost continuous, control measures should be given great
emphasis.

Some general design considerations in snow control are illustrated in
Fig. 2.8. One should by all means avoid locating houses, roads, or other
structures in depressions. Exposed plains or ridge tops should be consid-
ered in site selection in spite of the inconvenience caused by high winds.
The common practice of using elevated structures in arctic permafrost
areas is also helpful from the viewpoint of snow control.
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In road construction one should avoid sharp bends and use high sub-
grades. Thus the initial rate of snow deposition is minimized, and even if
some snow has to be plowed from the road, the windrows do not reach
such dimensions that the snow accumulation rate is significantly in-
creased. In the design of communities the maintenance efforts are re-
duced if the structures are located parallel to the prevailing wind direc-
tion and no roads or structures are located immediately on the downwind
side of large structures. The design of northern communities with re-
spect to snow is further discussed in Velli et al. (1977). Small-scale model
tests may prove useful in design (Fig. 2.9). Modeling techniques have
been discussed in Anno (1984), Williams (1978), and Odar (1965),
among others.

One can also use active methods in snow control. Snow drifting can be
prevented in unfavorable locations, such as in front of doors, by using
different kinds of wind deflectors (Fig. 2.10). Snow fences have been
used to help in road maintenance (Fig. 2.11). These fences can also be
used to gather snow for winter road construction. To be effective, snow
fences should have sufficient height. Different kinds of strong cold-
weather-resistant plastic strips are gradually replacing wood as the pri-
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mary fence material (Fig. 2.12). The fences do not have to be of the
high-density type to be effective, as shown in Fig. 2.13.

Mechanical snow removal using different types of plowing equipment
plays a dominant role in snow control measures aimed at maintaining the
serviceability of roads, airfields, parking areas, and so on (Fig. 2.14). Salt
is often used to melt the hard-packed snow and ice left on the road after
plowing (Fig. 2.15). Some restricted areas such as bus terminals, bridges,
or important crossroads can also be kept free of snow and ice by thermal
methods using a heating cable network or hot fluid circulation in a pipe
network (Fig. 2.16). A typical heat input requirement to overcome heat
losses by convection, radiation, and evaporation and to melt the falling
snow is on the order of 500 W/m?2 {150 Btu/(ft2-h)]. For further discus-
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strip fence at left. (Courtesy of Finnish Roads and Waterways Administration.)

sion of the different ice and snow control methods, the reader is referred
to Gray and Male (1981), and for thermal control system design to the
ASHRAE handbook (1980).

2.4 Construction on Snowfields

In the continental ice shelves of Greenland and Antarctica and in some
other ice caps and glacierized areas the snow does not melt but slowly
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Figure 2,13 Snowdrifts generated by solid snow fences and vertical slat fences of
various densities, all 1.87 m (6 ft 2 in) high with a gap of 20+ 5 cm (8 = 2 in)
underneath. (Price, 1961.)
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Figure 2.14 Snowplowing. (Courtesy of D. Minsk.)

turns into ice as the overburden pressure increases. The construction
problems on these snowfields are unique. In addition to the severe cli-
mate conditions there are virtually no local resources available. Further-
more, the structures have to be founded on the thermally and mechani-
cally unstable snow, and the typically extensive snowdrift phenomena
have to be controlled. In foundation and tunnel design one must take into
consideration the movements of snow layers in both the vertical and the
horizontal direction. The movements are absolute as well as relative
(with respect to the snow surface) as the snow undergoes viscoelastic
deformation under overburden pressure. The natural process may be

Figure 2.15 Sand and salt spreading on road to increase
abrasion and melt ice. (Courtesy of Finnish Roads and
Waterways Administration.)
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0.94

disturbed as a result of construction activities. Snow undergoes acceler-
ated creep under concentrated loads, and complex stress and strain fields
form around any kind of mechanical or thermal disturbance (Mellor and
Reed, 1967).

Separate or strip footings and friction piles are typical foundation
structures used on snowfields. Bearing pressure values for moderate
relative settlement rates are usually less than 50 kPa (7 lb/in2), and
footings may be tied together to avoid separation (Fig. 2.17). For piles
the allowable long-term skin friction values may be on the order of
10 kPa (1.5 Ib/in?) (Fig. 2.18). It is interesting to note that negative skin
friction may result at the upper portions of the pile when the new snow
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Figure 2.19 DEW line station DYE-3 in Greenland. (Courtesy of U.S
Army Cold Regions Research and Engineering Laboratory.)

settles faster than the pile. Snow density and temperature are the most
important parameters in foundation design, but snow properties and
foundation size should also be considered (Mellor, 1969; Kovacs, 1976).
Because experience with foundation behavior on snowfields is limited,
long-term bearing tests may be necessary for large-scale construction.

Some basic design alternatives for construction on snowfields are
shown in Figs. 2.19 to 2.22. If snowdrifts are to be controlled, the struc-
tures have to be lifted well above the ground level. Small or temporary
buildings can be removed when the surface of the snow cover reaches
levels that are not acceptable. Larger buildings should be provided with
a lifting mechanism that can also be used to balance the structure in case
of uneven foundation settlements (Fig. 2.20). Airflow disturbances due
to buildings, parked cars, and equipment can cause large snowdrifts in
the surrounding areas, which may have to be leveled off occasionally.

In the alternative shown in Fig. 2.21, snow is allowed to drift around
and eventually bury the structure. The thermal stability of the snow is
maintained by ventilating the airspace between the protective steel arch
and the heated facilities. The effective lifespan of any undersnow struc-
ture is limited, especially if the protective arches or possible steel tube
linings are not designed to resist the total overburden pressure as the
surrounding snow deforms.
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Figure 2.20 Cross sections of structural frames of DEW line ice-cap stations. (a)
DYE-2 and DYE-3 as built in 1959 -1960. (b) DYE-2 since fall 1970. (¢) DYE-3 since
fall 1972. (Tobiasson et al., 1974.)

2.5 Avalanches

An avalanche may be a small trickle of loose snow, a huge devastating
slide of snow, ice, and rock, or anything in between (Fig. 2.23). An
avalanche is initiated when the shear strength of the snow cover is ex-
ceeded over a sufficiently large area. This may occur when the creep of
snow reaches the tertiary stage, but often the reason is an outside factor,
such as a significant change in temperature, strong winds, heavy snow-
fall, an earthquake, or falling snow, rock, or ice. Avalanches have also
been triggered by human activities such as skiing, blasting, or even by
sound waves.
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Figure 2.21 Arch-shaped structures at Byrd Station, Antarctica. (Mellor, 1965.)

A typical avalanche terrain has a deep snow cover and steep slopes.
The characteristics of the slopes also have an important effect on ava-
lanche occurrence. Uneven slopes and trees tend to anchor the snow
cover in its place, whereas smooth slopes favor avalanches. Large snow-
slides occur usually when the slope angle is between 25 and 50°. There
are usually no significant snow accumulations on steeper slopes. On
gentle slopes only smooth wet slush runs occur sometimes. Most of the
avalanches occur in well-defined areas. Central Europe is maybe the best
known avalanche area, but there are also large avalanche areas in the
western part of North America and in Asia.

The most important characteristic of an avalanche is its magnitude.
The reaches of the largest observed avalanches have been measured in
kilometers, and the volumes have exceeded 10® m3 (3.5 X 107 ft3).
Such avalanches destroy everything in their path and may create impact
pressures approaching 1 MPa (150 Ib/in2). The typical volume range of

Exterior protective metal arch

Ventilated space

Insulated warking and sleeping units

Original snow surfoce

\— Snowfloor deformation

moy be uneven

Figure 2.22 Schematic cross section of arch-shaped structure.
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Figure 2.23 Dry slab avalanche. (Courtesy of U.S. Forest Service.)

an avalanche is between 10%and 105 m?3 (3.5 X 104 and 3.5 X 106 ft3),
and the corresponding impact pressures are on the order of 20 to
200 kPa (3 to 30 Ib/in?), although higher peak pressures may be experi-
enced (Fig. 2.24). In loose snow the avalanche may begin in a small area,
but the rupture of hard snow usually occurs over an extended area (slid-
ing slabs), either along a layer boundary in the snow or along the ground
surface. Different types of avalanches can be described by the U.S. For-
est Service avalanche classification shown in Fig. 2.25. For a more de-
tailed discussion of the characteristics and dynamics of avalanches the
reader is referred to Mellor (1968) and Colbeck (1980).

Avalanches represent a serious potential hazard to human life and
property. When necessary, they will have to be controlled. It is possible
to trigger avalanches in advance by using explosives. For more perma-
nent protection, structural solutions are available.

Some structural solutions for avalanche control are shown in Fig. 2.26.
An extensive snow accumulation at the initial failure areas can be pre-
vented using wind deflectors. Cut and fill terraces and supporting struc-
tures can be used as avalanche barriers. Supporting structures are typi-
cally arranged 15 to 30 m (50 to 100 ft) apart, depending on slope angle,
slope smoothness, and snow depth. The snow force component parallel
to the slope is approximated in Swiss practice (Mellor, 1968) by

2
P=%KNy, (CO}S‘ a) (2.2)
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Figure 2.24 Variation of avalanche impact pressure for differ-
ent leading-edge angles as a function of flow velocity and snow
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wall. (Lang and Brown, 1980.)

where N = glide factor (1.2 to 3.2, depending on slope smoothness and
direction)
K = creep factor (typically 0.7 to 1.0, depending on slope angle
and snow density)
¥, = snow density
h = snow thickness
a = slope angle

Instead of preventing release of the slide, the control can also be
accomplished by using deflective or protective structures. The most
important loads on the avalanche gallery shown in Fig. 2.26 are the
weight of the avalanche, the possible dynamic effects in case of a chang-
ing slope, the weight of the snow cover and previous avalanche debris in
case they are not swept away, and the shear or friction force along the
roof. Typical design values for normal roof loads may be up to 50 kPa
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Figure 2.25 Avalanche classification. (U.S. Forest Service, 1961.)

(1000 1b/ft2). The friction force along the roof is often considered to be
50% of the normal force caused by the sliding avalanche. The design
principles of avalanche control measures are discussed thoroughly in
Mellor (1968).

2.6 Icing on Structures

Icing on structures is caused by freezing of water droplets in subsequent
layers on the surface of a structure exposed to the atmosphere. The
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Figure 2.26 Avalanche control measures.

source of this ice buildup may be fog or clouds containing tiny super-
cooled water droplets, freezing rain, wet snow, or spray from breaking
waves and wave crests. Icing can occur anywhere in cold regions, but the
frequency and severity vary greatly with the location.

Icing on pavements is maybe the most familiar type of icing in cold
regions. This occasional event may cause extremely hazardous driving
conditions. Ice may form on the pavement under several conditions, but
in a typical case the temperature of the pavement is significantly below
the freezing point and the water droplets are supercooled or near the
freezing point. A comprehensive analysis of the event is presented in
Jumikis (1966).

Heavy atmospheric icing combined with strong winds may be the
dominant factor in the design of slender structures such as radio antennas
or power transmission lines (Figs. 2.27 and 2.28). Numerous collapses of
such structures have been experienced. In the case of ships and ocean
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structures the source of icing is generally sea ice spray. Icing causes
mainly operational difficulties, but in extreme cases also safety hazards
(Fig. 2.29).

Ice can deposit on the surface of a structure in different forms and
densities. Well supercooled tiny water droplets in fog or a cloud freeze
very rapidly when they get in contact with a structure. As a result,
very-low-density ice, known as soft rime. is formed. Hard rime forms
when the freezing of droplets occurs slowly so that some flow of water
has time to occur before crystallization. It has a density of 100 to 600
kg/m? (6 to 40 Ib/ft3). When water droplets have sufficient time to wet
the surface of the structure before freezing, a glaze with densities run-
ning from 700 to 900 kg/m?® (45 to 55 Ib/ft?) is formed. Icing deposits
may also be combinations of these different forms and snow. When icing
is formed from seawater, it contains brine, pockets of unfrozen saltwater.

The occurrence, severity, and type of atmospheric icing depend very
much on temperature, wind speed, total water content of the air, and
water droplet dimensions. The general principles of different forms of
atmospheric icing are illustrated in Fig. 2.30. The formation of glaze is

Figure 2,27 Heavy icing on a radio tower (a), (b) and
structure after collapse due to combined effects of ice
and wind (c). (Courtesy of Finnish Broadcasting Com-

pany.)

(©
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Figure 2.28 Exceptionally heavy ice buildup on conductors in a power
transmission line. (Courtesy of Horn Tron Ab.)

most probable at temperatures between 0 and —3°C (32 and 27°F).
Lower temperatures and low wind speeds favor the formation of soft
rime.

Similar approximate relationships can also be established for the sever-
ity of icing occurring at sea, as shown in Fig. 2.31. Naturally the pecu-
liarities of the local wave climate and the structural considerations have
some effect on the icing intensity. Sea icing is usually caused by spray

. - ~ N wy

Figure 2,29 Heavy sea icing on a ship. (Courtesy of Oy Wirtsili Ab.)
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Figure 2.32 (a) Collection efficiency E and (b) typical ice accu-
mulation shapes on cylindrical structures.

from waves breaking against ship hulls or other solid objects. Spray from
wave crests is a significant source of icing at veryv high wind speeds.
Contrary to atmospheric icing, the bulk of sea icing occurs at low eleva-
tions, generally less than 15 m (50 ft) above the peak water level, al-
though waves breaking against structures may raise significant amounts
of droplets above this elevation.

Theoretically speaking, the amount of icing on a structure, or the
so-called icing efficiency, can be estimated by

Collection efficiency E
o
)

|
03] 1 10 100 1000

K

Figure 2.33 Collection efficiency E as determined by inertia parame-
ter K and parameter ¢. (Langmuir and Blodgett, 1946.)
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dM ,
ar ECDVW (2.3)
where M = mass of ice deposited in time ¢
E = collection efficiency coefficient
C = capture coefficient
V = wind velocity
W = liquid water content in air
D = width of structure

The collection efficiency coefficient corresponds to the fact that water
droplets are deflected from their linear trajectories as they approach the
structure (Fig. 2.32). It is the ratio of the mass of droplets striking the
structure to the total mass of droplets that would have hit the structure if
they had not been deflected. In Fig. 2.33 the collection efficiency E is
given for a cylinder with radius R as a function of two variables, the
inertia parameter K and parameter ¢,

I<=1290VTr2 [cr:2] (2.4)
¢=0.175VR [Cr:z] (2.5)

where r is the radius of the droplets. It can be seen that theoretically no
icing occurs when K < 0.125.

Not all the water droplets that strike the structure will necessarily
freeze. Especially at high wind speeds, the heat of fusion of all incoming
water droplets may not be dissipated before they flow to the outer sur-
face and are carried away by the airflow. Data in Glukhov (1971) illus-
trated that while the capture coefficient is close to 1 at wind speeds
ranging from 0 to 5 m/s (0 to 10 mi/h), it may decrease to about 0.2 at
wind speeds exceeding 10 m/s (20 mi/h).

In practice there is not enough information available for theoretical
icing computations to be used. Attempts have been made to describe
areal risk and severity of atmospheric or spray icing on a large scale (for
example, Bennett, 1959; Tattelman and Gringorten, 1973). In any case,
icing design loads should be based on local codes and experience [for
example, in Finland the ice load on a conductorisatleast 12.5to 25 N/m
(1 to 2 Ib/ft)] along with rational considerations given to site location,
elevation, and exposure; the influence of the structural shape on the
magnitude of icing; and the asymmetrical and uneven character of ice
formations.

There are no easy solutions to control icing. Heat and freezing point
depressants have been applied with some success, but generally this kind
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of protection requires too great an effort except in power conductors,
where losses are adequate to melt the ice. In some cases, structures can
be protected by flexible sheetings. Space truss structures can be en-
closed by corrugated plastic sheets in order to control icing. Site selec-
tion is in many cases very important. For example, elevated power-line
routing above treeline should be avoided, while valleys shielded from
dominant moist wind directions are preferred. In coastal areas, protected
structures should be located out of the reach of droplets from major
wave-breaking elements. Sometimes this distance may be over 100 m
(300 ft). If ice has to be removed mechanically, it is desirable to use
simple structural shapes and act quickly before a strong bond can form
between ice and structure. Coating with low-adhesion materials, such as
some plastics, may also be used.

For further discussions on icing phenomena and their regional occur-
rence the reader is referred to the extensive summary reports by Minsk
(1977, 1980) and to McLeod (1977).
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